Add like
Add dislike
Add to saved papers

Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations.

The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient (ADC), cannot reveal microstructural changes in different locations or the degree of infarction. This prospective observational study was reviewed and approved by the Institutional Review Board of Xiamen Second Hospital, China (approval No. 2014002).Diffusion kurtosis imaging (DKI) was used to detect 199 lesions in 156 patients with acute ischemic stroke (61 males and 95 females), mean age 63.15 ± 12.34 years. A total of 199 lesions were located in the periventricular white matter (n = 52), corpus callosum (n = 14), cerebellum (n = 29), basal ganglia and thalamus (n = 21), brainstem (n = 21) and gray-white matter junctions (n = 62). Percentage changes of apparent diffusion coefficient (ΔADC) and DKI-derived indices (fractional anisotropy [ΔFA], mean diffusivity [ΔMD], axial diffusivity [ΔDa ], radial diffusivity ΔDr , mean kurtosis [ΔMK], axial kurtosis [ΔKa ], and radial kurtosis [ΔKr ]) of each lesion were computed relative to the normal contralateral region. The results showed that (1) there was no significant difference in ΔADC, ΔMD, ΔDa or ΔDr among almost all locations. (2) There was significant difference in ΔMK among almost all locations (except basal ganglia and thalamus vs. brain stem; basal ganglia and thalamus vs. gray-white matter junctions; and brainstem vs. gray-white matter junctions. (3) The degree of change in diffusional kurtosis in descending order was as follows: corpus callosum > periventricular white matter > brainstem > gray-white matter junctions > basal ganglia and thalamus > cerebellum. In conclusion, DKI could reveal the differences in microstructure changes among various locations affected by acute ischemic stroke, and performed better than diffusivity among all groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app