Add like
Add dislike
Add to saved papers

pH Variation as a Simple and Selective Pathway for Obtaining Nanoparticle or Nanocapsule Polysaccharides.

The fabrication of polysaccharides to be nanoparticles or nanocapsules is quite specific due to various parameters and factors. The present work demonstrates a simple pathway to selectively prepare the ionic polysaccharide flakes to be nanoparticles or nanocapsules. The systematic studies on the model cases of cationic polysaccharide (i.e. chitosan) and anionic polysaccharide (i.e. alginate) confirm that pKa is the key point to tune the polysaccharides to be nanoparticles or nanocapsules. When the ionic polysaccharides were in an oil/water emulsion system, the pH close to pKa leads to the densely packed polysaccharide chains under the hydrogen bond networks, and as a result the crosslink occurs all through the chains to be nanoparticles. On the other hand, when pH was adjusted to the lower or higher than pKa depending on the types of ionic polysaccharide, the polysaccharide chains are under charge-charge repulsive force, resulting in the alignment of polysaccharide chains to be hollow nanospheres, and at that time the crosslink initiates the formation of nanocapsules. The present work, for the first time, clarifies that pH variation is the key to selectively prepare nanoparticles or nanocapsules, and this is important for delivery systems, coatings, sensors, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app