Add like
Add dislike
Add to saved papers

Hyaluronic acid-chitosan nanoparticles encoding CrmA attenuate interleukin-1β induced inflammation in synoviocytes in vitro.

Osteoarthritis (OA) is a common degenerative joint disease characterized by inflammation of synoviocytes and degradation of cartilage. In the present study, hyaluronic acid/chitosan (HA/CS) nanoparticles were used as a vehicle for gene therapy of OA, and the cytokine response modifier A (CrmA) pDNA was proposed as the target gene. The HA/CS/pCrmA nanoparticles were prepared and the characteristics of the nanoparticles were examined. The nanoparticles were spherical, and the smallest size was obtained with the HA:CS weight ratio of 1:4. The release analysis exhibited a constant release over 29 days. The pDNA was completely combined with HA/CS nanoparticles and the HA/CS nanoparticles protected pDNA from degradation. Subsequently, rat synoviocytes were transfected with HA/CS/pDNA nanoparticles, and the results demonstrated that the HA/CS nanoparticles were able to improve the transfection capacity of pDNA. The cytotoxicity of the HA/CS/pDNA nanoparticles was additionally detected using a MTS assay to ensure that the HA/CS nanoparticle was a safe carrier. To additionally investigate the effects of HA/CS/pCrmA nanoparticles on synoviocytes in OA, the MMP‑3 and MMP‑13 gene expression levels were detected at the gene and protein expression levels. These results indicated that the HA/CS/pCrmA nanoparticles attenuated interleukin‑1β‑mediated inflammation in synoviocytes. It was concluded that the HA/CS/pCrmA nanoparticles may provide a novel approach to the treatment of OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app