Add like
Add dislike
Add to saved papers

Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment.

The increasing load of nanoplastic pollution in the environment has become a major concern toward human and environmental safety. The current investigation mainly focused on assessing the toxic behavior of nanoplastics (polystyrene nano-spheres (PNS)) toward blood cells and marine crustacean. The study also investigated the temporal stability of PNS under different water matrices and its size-dependent sedimentation behavior in the sea water dispersion. The nano-dispersion showed mean particle size of 561.4 ± 0.80 and 613.7 ± 0.11 nm for PNS 1 and 781.4 ± 0.80 and 913.7 ± 0.11 nm for PNS 2 in lake and seawater, respectively after 48-h incubation, which is ~ 8-fold increase from its original size. The LC50 value against Artemia salina and lymphocytes were found to be 4.82 and 8.79 μg/mL, and 75 μg/mL, respectively for PNS 1 and PNS 2. The genotoxic study reveals that around 50% of lymphocytes were affected by both PNS at 50 μg/mL concentration, whereas the cytotoxic studies on RBC and lymphocytes showed 50% toxicity only at 100 μg/mL concentration. The genotoxic study displayed numerous tri- and multi-nucleated cells. The biochemical profile of A. salina exposed to lethal concentration demonstrated a significant decrease in the total protein, reduced glutathione, and catalase activity and increase in lipid peroxidation activity as a result of PNS permeation to tissues. In conclusion, the present study demonstrated that the polystyrene nano-spheres are emerging pollutant in the environment and are hazardous to humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app