Add like
Add dislike
Add to saved papers

Synthesis of three dimensional N&S co-doped rGO foam with high capacity and long cycling stability for supercapacitors.

Inspired by steaming bread, a novel three dimensional N and S co-doped reduced graphene oxide (3D NS-rGO) foam is fabricated via a gas foaming method similar to steaming bread procedure, in which (NH4 )2 S2 O3 is selected as the foaming agent as well as N and S source. Such cross-linked 3D structure not only has the high specific surface area also enable more transport channels for electrons/ions transport. Furthermore, introducing of N and S-containing functional groups creates lattice defects in graphene, which provides more active sites where the Faradaic pseudocapacitance occurs. Consequently, the electrochemical test of 3D NS-rGO sample in a three-electrode system demonstrates a high specific capacity of 306.3 F g-1 at 1 A g-1 , two times higher than that of rGO prepared at the same temperature. Moreover, 3D NS-rGO sample reveals the superb cycling stability with less than 2% capacitance loss after 10,000 cycles and it exhibits potential application for high performance supercapacitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app