Add like
Add dislike
Add to saved papers

Novel fuzzy modeling and energy-saving predictive control of coordinated control system in 1000 MW ultra-supercritical unit.

ISA Transactions 2018 November 4
In order to satisfy the growing demands of control performance and energy conservation in power generation process, a novel T-S fuzzy modeling method combined with the quantum artificial bee colony (QABC) algorithm is proposed and applied to the coordinated control system (CCS) of ultra-supercritical unit in 1000MW power plant. The T-S fuzzy modeling consists of the identifications of premise part and consequence part. In the premise part identification, the cluster number and initial cluster centers are obtained at first by using entropy-based clustering method. Secondly, the initial cluster centers are modified through QABC algorithm to guarantee the integral of data and avoid possible marginalization. Then, the consequence part is identified through exponentially-weighted least squares. Furthermore, on account of the obtained fuzzy model, an energy-saving predictive control (ESPC) algorithm based on the generalized predictive control is introduced. In the rolling optimization process of ESPC, the values of manipulated variables taken as energy consumption indicator are introduced into objective function to decrease the consumption of energy and improve the performance of control process. Meanwhile, the addition of manipulated variables constraints can obtain further improvements of energy-saving efficiency and control performance. The simulation results demonstrate the high precision of identified model and ideal performance along with energy-saving ability of ESPC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app