Add like
Add dislike
Add to saved papers

FERONIA Regulates Auxin-Mediated Lateral Root Development and Primary Root Gravitropism.

FEBS Letters 2018 November 12
The Arabidopsis FERONIA (FER) receptor kinase is a key hub of cell signaling networks mediating various hormone, stress, and immune responses. Previous studies have shown that FER functions correlate with auxin responses, but the underlying molecular mechanism is unknown. Here, we demonstrate that the primary root of the fer-4 mutant displays increased lateral root branching and a delayed gravitropic response, which are associated with polar auxin transport (PAT). Our data suggest that aberrant PIN2 polarity is responsible for the delayed gravitropic response in fer-4. Furthermore, the diminished F-actin cytoskeleton in fer-4 implies that FER modulates F-actin-mediated PIN2 polar localization. Our findings provide new insights into the function of FER in PAT. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app