Add like
Add dislike
Add to saved papers

Rosmarinic Acid Derivatives' Inhibition of Glycogen Synthase Kinase-3β Is the Pharmacological Basis of Kangen-Karyu in Alzheimer's Disease.

Inhibition of glycogen synthase kinase 3β (GSK-3β) is considered to be the central therapeutic approach against Alzheimer's disease (AD). In the present study, boiled water extracts of the Kangen-karyu (KK) herbal mixture and its constituents were screened for GSK-3β inhibitory activity. KK is used in traditional Kampo and Chinese medicines for improving cognitive function. The GSK-3β inhibition potential was evaluated by using the Kinase-Glo luminescent kinase assay platform. Furthermore, enzyme kinetics and in silico modeling were performed by using AutoDockTools to demonstrate the mechanism of enzyme inhibition. KK extract significantly inhibited GSK-3β in a concentration-dependent manner (IC50 : 17.05 ± 1.14 μg/mL) when compared with the reference drug luteolin (IC50 : 2.18 ± 0.13 μM). Among the six components of KK, extracts of Cyperi Rhizoma and Salviae Miltiorrhizae Radix significantly inhibited GSK-3β with IC50 values of 20.68 ± 2.50 and 7.77 ± 1.38 μg/mL, respectively. Among the constituents of the roots of S. miltiorrhiza water extract, rosmarinic acid, magnesium lithospermate B, salvianolic acid A, salvianolic acid B, and salvianolic acid C inhibited GSK-3β with IC50 values ranging from 6.97 to 135.5 μM. Salvianolic acid B was found to be an ATP-competitive inhibitor of GSK-3β and showed the lowest IC50 value (6.97 ± 0.96 µM). In silico modeling suggested a mechanism of action by which the hydrophobic, π⁻cation, and hydrophilic interactions of salvianolic acid B at ATP and substrate sites are critical for the observed GSK-3β inhibition. Therefore, one of the mechanisms of action of KK against AD may be the inhibition of GSK-3β and one of the active components of KK is the root of S. miltiorrhiza and its constituents: rosmarinic acid, magnesium lithospermate B, and salvianolic acids A, B, and C. Our results demonstrate the pharmacological basis for the use of KK against AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app