Add like
Add dislike
Add to saved papers

Spatiotemporal Analyses of Cellular Tractions Describe Subcellular Effect of Substrate Stiffness and Coating.

Cells interplay with their environment through mechanical and chemical interactions. To characterize this interplay, endothelial cells were cultured on polyacrylamide hydrogels of varying stiffness, coated with either fibronectin or collagen. We developed a novel analysis technique, complementary to traction force microscopy, to characterize the spatiotemporal evolution of cellular tractions: We identified subpopulations of tractions, termed traction foci, and tracked their magnitude and lifetime. Each focus consists of tractions associated with a local single peak of maximal traction. Individual foci were spread over a larger area in cells cultured on collagen relative to those on fibronectin and exerted higher tractions on stiffer hydrogels. We found that the trends with which forces increased with increasing hydrogel stiffness were different for foci and whole-cell measurements. These differences were explained by the number of foci and their average strength. While on fibronectin multiple short-lived weak foci contributed up to 30% to the total traction on hydrogels with intermediate stiffness, short-lived foci in such a number were not observed on collagen despite the higher tractions. Our approach allows for the use of existing traction force microscopy data to gain insight at the subcellular scale without molecular probes or spatial constraining of cellular tractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app