Add like
Add dislike
Add to saved papers

Nano-Sized Lipidated Dendrimers as Potent and Broad-Spectrum Antibacterial Agents.

There is considerable interest in the development of antimicrobial polymers including dendrimers due to the ease of synthesis and low manufacturing cost compared to host defense peptides (HDPs). Herein, a new class of nanomaterials-lipidated amphiphilic dendrimers-is presented that mimic the antibacterial mechanism of HDPs by compromising bacterial cell membranes. Unlike conventional dendrimers that are prepared generation by generation symmetrically with molecular weight distribution, these lipidated dendrimers are prepared on the solid phase with a hanging lipid tail and precisely controlled structure. It is shown through rational design that these lipidated dendrimers display potent and selective antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. In addition to antibacterial activity against planktonic bacteria, these dendrimers are also shown to inhibit bacterial biofilms effectively. This class of dendrimers as a new class of biomaterials may lead to a useful generation of antibiotic agents with practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app