Add like
Add dislike
Add to saved papers

Lysophosphatidic acid is associated with neuropathic pain intensity in humans: An exploratory study.

The underlying mechanisms of neuropathic pain remain to be elucidated. Basic animal research has suggested that lysophosphatidic acids, which are bioactive lipids produced by autotaxin from lysophosphatidylcholine, may play key roles in the initiation and maintenance of neuropathic pain. Here, we investigated the clinical relevance of lysophosphatidic acids signaling on neuropathic pain in humans. Eighteen patients who had been diagnosed with neuropathic pain with varied etiologies participated in the study. Cerebrospinal fluid samples were obtained by lumbar puncture and the concentrations of 12 species of lysophosphatidic acids and lysophosphatidylcholine, autotaxin, and the phosphorylated neurofilament heavy subunit were measured. Pain symptoms were assessed using an 11-point numeric rating scale and the Neuropathic Pain Symptom Inventory regarding intensity and descriptive dimensions of neuropathic pain. The total lysophosphatidic acids were significantly associated with both pain intensity and symptoms. 18:1 and 20:4 lysophosphatidic acids in particular demonstrated the most correlations with dimensions of pain symptoms. Autotaxin and the phosphorylated neurofilament heavy subunit showed no association with pain symptoms. In conclusions, lysophosphatidic acids were significantly associated with pain symptoms in neuropathic pain patients. These results suggest that lysophosphatidic acids signaling might be a potential therapeutic target for neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app