Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors.

ACS Nano 2018 November 28
Cancer is one of the leading causes of morbidity and mortality in the world, but more cancer therapies are needed to complement existing regimens due to problems of existing cancer therapies. Herein, we term ferroptosis therapy (FT) as a form of cancer therapy and hypothesize that the FT efficacy can be significantly improved via accelerating the Fenton reaction by simultaneously increasing the local concentrations of all reactants (Fe2+ , Fe3+ , and H2 O2 ) in cancer cells. Thus, Fenton-reaction-acceleratable magnetic nanoparticles, i.e., cisplatin (CDDP)-loaded Fe3 O4 /Gd2 O3 hybrid nanoparticles with conjugation of lactoferrin (LF) and RGD dimer (RGD2) (FeGd-HN@Pt@LF/RGD2), were exploited in this study for FT of orthotopic brain tumors. FeGd-HN@Pt@LF/RGD2 nanoparticles were able to cross the blood-brain barrier because of its small size (6.6 nm) and LF-receptor-mediated transcytosis. FeGd-HN@Pt@LF/RGD2 can be internalized into cancer cells by integrin αv β3 -mediated endocytosis and then release Fe2+ , Fe3+ , and CDDP upon endosomal uptake and degradation. Fe2+ and Fe3+ can directly participate in the Fenton reaction, whereas the CDDP can indirectly produce H2 O2 to further accelerate the Fenton reaction. The acceleration of Fenton reaction generates reactive oxygen species to induce cancer cell death. FeGd-HN@Pt@LF/RGD2 successfully delivered reactants involved in the Fenton reaction to the tumor site and led to significant inhibition of tumor growth. Finally, the intrinsic magnetic resonance imaging (MRI) capability of the nanoparticles was used to assess and monitor tumor response to FT (self-MRI monitoring).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app