Add like
Add dislike
Add to saved papers

Mouse dendritic cell migration in abdominal lymph nodes by intraperitoneal administration.

Dendritic cell (DC) based immunotherapy is a promising approach for cancer treatment and has been approved in clinical settings for decades. Clinical trials have demonstrated relatively poor therapeutic efficacy. The efficacy of DC immunotherapy is strongly influenced by their ability to migrate to the draining lymph nodes (LNs). Therefore, it is critical to deliver DCs and monitor the in vivo biodistributions of DCs after administration. The purpose of this study is to determine whether a novel injection route of DCs improves DC migration to LNs, tissues, organs and lymphatics. In the present study, a modified method was investigated to acquire DCs from mouse bone marrow. Cultured antibody labeled DCs were analyzed by flow cytometry. India ink was used to visualize mouse abdominal LNs and PKH26 was utilized to label DCs for intraperitoneal (IP) injection, results were evaluated by histology. Our results showed that large amounts of DCs with a relatively high purity were acquired. IP injection of india ink marked the abdominal LNs and PKH26 labeled DCs showed IP was an effective administration route to increase the absorption of viable DCs, and different time points after IP inject showed no significant difference of the migrated DCs. The findings indicated that large amounts of high purity DCs can be acquired through our method and IP injection accelerates DCs migration to abdominal LNs, which can be directly translated to clinical settings, especially for abdominal cancers. This study makes a foundation for future researches of DC-based immunotherapy as a treatment modality against cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app