Add like
Add dislike
Add to saved papers

Comprehensive analysis of N-glycans in IgG purified from ferrets with or without influenza A virus infection.

Influenza viruses cause contagious respiratory infections resulting in significant economic burdens to communities. Production of influenza-specific immunoglobulins, specifically IgGs, is one of the major protective immune mechanisms against influenza viruses. In humans, N-glycosylation of IgGs plays a critical role in antigen binding and effector functions. The ferret is the most commonly used animal model for studying influenza pathogenesis, virus transmission, and vaccine development, but its IgG structure and functions remain largely undefined. Here, we show that ferret IgGs are N-glycosylated and that their N-glycan structures are diverse. Using a comprehensive strategy based on mass spectrometry (MS) and ultra-high-pressure liquid chromatography analyses in combination with exoglycosidase digestions, we assigned 42 N-glycan structures in ferret IgGs. We observed that N-glycans of ferret IgGs consist mainly of complex-type glycans, including some high-mannose and hybrid glycans, similar to those observed in human IgG. The complex-type glycans of ferret IgGs were primarily core fucosylated. Furthermore, a fraction of N-glycans carried bisecting GlcNAc. Ferret IgGs also had a minor fraction of glycans carrying α2-6Neu5Ac(s). We noted that unlike human IgG, ferret IgGs have αGal epitopes on some N-glycans. Interestingly, influenza A infection caused prominent changes in the N-glycans of ferret IgG, mainly due to an increase in bisecting GlcNAc and F1A2G0 and a corresponding decrease in F1A2G1. This suggests that the glycosylation of virus-specific IgG may play a role in its functionality. Our study highlights the need to further elucidate the structure-function relationships of IgGs in universal influenza vaccine development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app