Add like
Add dislike
Add to saved papers

Topological vulnerability of power grids to disasters: Bounds, adversarial attacks and reinforcement.

Natural disasters like hurricanes, floods or earthquakes can damage power grid devices and create cascading blackouts and islands. The nature of failure propagation and extent of damage, among other factors, is dependent on the structural features of the grid, that are distinct from that of random networks. This paper analyzes the structural vulnerability of real power grids to impending disasters and presents intuitive graphical metrics to quantify the extent of topological damage. We develop two improved graph eigen-value based bounds on the grid vulnerability. Further we study adversarial attacks aimed at weakening the grid's structural robustness and present three combinatorial algorithms to determine the optimal topological attack. Simulations on power grid networks and comparison with existing work show the improvements of the proposed measures and attack schemes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app