Add like
Add dislike
Add to saved papers

Endothelial, smooth muscle and fibroblast cell sheet fabrication from self-assembled thermoresponsive poly(glycidyl ether) brushes.

Soft Matter 2018 November 8
In this study, we introduce a platform to fabricate human dermal fibroblast (HDF), human aortic smooth muscle cell (HAoSMC) and human umbilical vein endothelial cell (HUVEC) sheets using thermoresponsive poly(glycidyl ether) coatings. Copolymer brushes based on glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE) were self-assembled onto polystyrene (PS) culture substrates via the physical adsorption of a hydrophobic, photoreactive benzophenone anchor block based on the monomer 4-[2-(2,3-epoxypropoxy)ethoxy]benzophenone (EEBP). The directed self-assembly of well-defined, end-tethered poly(GME-ran-EGE)-block-poly(EEBP) (PGE) brushes was achieved via the selective, EEBP-driven adsorption of the asymmetric block copolymer from dilute aqueous solution below its cloud point temperature (CPT). Subsequently, the PGE brush layers were covalently immobilized onto the PS surfaces by irradiation with UV light and characterized by ellipsometry, static water contact angle (CA) measurements and atomic force microscopy (AFM). We found that, by decreasing the temperature from 37 to 20 °C, the coatings undergo a pancake-to-brush transition, which triggers cell sheet detachment. In addition, cell culture parameters were optimized to allow proper adhesion and controlled detachment of confluent HDF, HAoSMC and HUVEC sheets, which can be applied in vascular tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app