Add like
Add dislike
Add to saved papers

Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.

Simultaneously achieving high piezoresistive sensitivity, stretchability, and good electrical conductivity in conductive elastomer composites (CECs) with carbon nanofillers is crucial for stretchable strain sensor and electrode applications. Here, we report a facile and environmentally friendly strategy to realize these three goals at once by using branched carbon nanotubes, also known as the carbon nanostructure (CNS). Inspired by the brick-wall structure, a robust segregated conductive network of a CNS is formed in the thermoplastic polyurethane (TPU) matrix at a very low filler fraction, which renders the composite very good electrical, mechanical, and piezoresistive properties. An extremely low percolation threshold of 0.06 wt %, currently the lowest for TPU-based CECs, is achieved via this strategy. Meanwhile, the electrical conductivity is up to 1 and 40 S/m for the composites with 0.7 and 4 wt % CNS, respectively. Tunable piezoresistive sensitivity dependent on CNS content is obtained, and the composite with 0.7 wt % filler has a gauge factor up to 6861 at strain ε = 660% (elongation at break is 950%). In addition, this strategy also renders the composites' attractive tensile modulus. The composite with 3 wt % CNS shows 450% improvement in Young's modulus versus neat TPU. This work introduces a facile strategy to fabricate highly stretchable strain sensors by designing CNS network structures, advancing understanding of the effects of polymer-filler interfaces on the mechanical and electrical property enhancements for polymer nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app