Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage.

Atherosclerosis 2018 November
BACKGROUND AND AIMS: In dialysis patients, vascular morbidities are highly prevalent and linked to leukocyte extravasation, especially of polarized monocytes. Experimental data demonstrate that phenotypic changes in monocytes require Y-box binding protein-1 (YB-1) upregulation.

METHODS: We determined YB-1 expression in circulating and vessel-invading monocytes from healthy controls and dialysis patients to correlate results with intima plaque formation and systemic inflammation.

RESULTS: Compared to healthy subjects, dialysis patients have fewer classical and more intermediate and non-classical monocytes. Post-translationally modified YB-1 (lysine 301/304 acetylation) is detected at high levels in the nucleus of adherent and invading CD14+ CD68+ monocytes from umbilical cord and atherosclerosis-prone vessels. The content of non-acetylated YB-1 is significantly decreased (p < 0.001), whereas acetylated YB-1 is correspondingly increased (p < 0.001) throughout all monocyte subpopulations, such that the overall content remains unchanged.

CONCLUSIONS: In dialysis patients the YB-1 acetylation status is higher with prevailing diabetes and intima plaque formation. Pro-inflammatory mediators TNFα, IL-6, uPAR, CCL2, M-CSF, progranulin, ANP, and midkine, as well as anti-inflammatory IL-10 are significantly increased in dialysis patients, emphasizing a systemic inflammatory milieu. Strong positive correlations of monocytic YB-1 content are seen with ANP, IP-10, IL-6, and IL-10 serum levels. This is the first study demonstrating an association of cold shock protein YB-1 expression with inflammation in hemodialysis patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app