Add like
Add dislike
Add to saved papers

A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants.

Molecular Plant 2018 November 6
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression, leading to gene silencing. We previously developed short tandem target mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice, and maize, providing a resource for the functional interrogation of miRNAs. We not only revealed the functions of several miRNAs in plant development, but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, and ion-channel activity-associated electrophysiology, demonstrating that STTM technology is an effective approach for studying miRNA functions. To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks, we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTM-induced miRNA knockdown plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app