Add like
Add dislike
Add to saved papers

Rate and age-dependent damage elasticity formulation for efficient hip fracture simulations.

Prediction of bone failure is beneficial in a range of clinical situations from screening of osteoporotic patients with high fracture risk to assessment of protective equipment against trauma. Computational efficiency is an important feature to consider when developing failure models for iterative applications, such as patient-specific diagnosis or design of orthopaedic devices. The authors previously developed a methodology to generate efficient mesoscale structural full bone models. The aim of this study was to implement a damage elasticity formulation representative of an elasto-plastic material model with age and strain rate dependencies compatible with these structural models. This material model was assessed in the prediction of femoral fractures in longitudinal compression and side fall scenarios. The simulations predicted failure loads and fracture patterns in good agreement with reported results from experimental studies. The observed influence of strain rate on failure load was consistent with literature. The superiority of a simplified elasto-plastic formulation over an elasto-brittle bone material model was assessed. This computationally efficient damage elasticity formulation was capable of capturing fracture development after onset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app