Add like
Add dislike
Add to saved papers

Impact of Fabp1 Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes.

Lipids 2018 September 11
Liver fatty-acid-binding protein (FABP1, L-FABP) is the major cytosolic binding/chaperone protein for both precursor arachidonic acid (ARA) and the endocannabinoid (EC) products N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Although FABP1 regulates hepatic uptake and metabolism of ARA, almost nothing is known regarding FABP1's impact on AEA and 2-AG uptake, intracellular distribution, and targeting of AEA and 2-AG to degradative hepatic enzymes. In vitro assays revealed that FABP1 considerably enhanced monoacylglycerol lipase hydrolysis of 2-AG but only modestly enhanced AEA hydrolysis by fatty-acid amide hydrolase. Conversely, liquid chromatography-mass spectrometry of lipids from Fabp1 gene-ablated (LKO) hepatocytes confirmed that loss of FABP1 markedly diminished hydrolysis of 2-AG. Furthermore, the real-time imaging of novel fluorescent NBD-labeled probes (NBD-AEA, NBD-2-AG, and NBD-ARA) resolved FABP1's impact on uptake vs intracellular targeting/hydrolysis. FABP1 bound NBD-ARA with 2:1 stoichiometry analogous to ARA, but bound NBD-2-AG and NBD-AEA with 1:1 stoichiometry-apparently at different sites in FABP1's binding cavity. All three probes were taken up, but NBD-2-AG and NBD-AEA were targeted to lipid droplets. LKO reduced the uptake of NBD-ARA as expected, significantly enhanced that of NBD-AEA, but had little effect on NBD-2-AG. These data indicated that FABP1 impacts hepatocyte EC levels by binding EC and differentially impacts their intracellular hydrolysis (2-AG) and uptake (AEA).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app