Add like
Add dislike
Add to saved papers

Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry.

Artificial Organs 2018 November
Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26-mm Edwards SAPIEN 3, 26-mm Medtronic CoreValve, and 25-mm Carpentier-Edwards PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840, that is, heart rate of 70 beats/min, cardiac output of 5 L/min, and mean aortic pressure of 100 mm Hg. A 2D PIV system was used to obtain flow velocity and viscous shear stress fields during the entire cardiac cycle. In vitro testing showed that the mean transvalvular pressure gradient was lowest for SAPIEN 3, followed by CoreValve, and PERIMOUNT Magna surgical bioprosthesis. In addition, the viscous shear stress magnitude within the jet boundary layer was higher in PERIMOUNT Magna than CoreValve and SAPIEN 3 at the peak of the flow. However, the measured shear stress values were below the known threshold for platelet activation and red blood damage. Therefore, shear-induced platelet activation is unlikely to take place during systole in the three bioprosthetic heart valves. The PIV measurements can be used for verification and validation of computational simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app