Add like
Add dislike
Add to saved papers

Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1.

Background: Endoplasmic reticulum (ER)-associated degradation (ERAD) regulates protein homeostasis in the secretory pathway by targeting misfolded or unassembled proteins for degradation by the proteasome. Hrd1 is a conserved multi-spanning membrane bound ubiquitin ligase required for ubiquitination of many aberrant ER proteins, but few endogenous substrates of Hrd1 have been identified to date.

Methods: Using a SILAC-based quantitative proteomic approach combined with CRISPR-mediated gene silencing, we searched for endogenous physiological substrates of Hrd1. We used RNA microarray, immunoblotting, cycloheximide chase combined with chemical genetics to define the role of Hrd1 in regulating the stability of endogenous ERAD substrates.

Results: We identified 58 proteins whose levels are consistently upregulated in Hrd1 null HEK293 cells. Many of these proteins function in pathways involved in stress adaptation or immune surveillance. We validated OS9, a lectin required for ERAD of glycoproteins as a highly upregulated protein in Hrd1 deficient cells. Moreover, the abundance of OS9 is inversely correlated with Hrd1 level in clinical synovium samples isolated from osteoarthritis and rheumatoid arthritis patients. Intriguingly, immunoblotting detects two OS9 variants, both of which are upregulated when Hrd1 is inactivated. However, only one of these variants is subject to proteasome dependent degradation that requires Hrd1 and the AAA (ATPase associated with diverse cellular activities) ATPase p97. The stability of the other variant on the other hand is influenced by a lysosomal inhibitor.

Conclusion: Hrd1 regulates the stability of proteins involved in ER stress response and immune activation by both proteasome dependent and independent mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app