Add like
Add dislike
Add to saved papers

Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma.

Allergy 2018 August 30
BACKGROUND: The diagnosis and phenotyping of paediatric asthma are particularly complex due to the lack of currently available sensitive diagnostic tools. This often results in uncertainties associated with inhaled steroid therapy prescription. Therefore, this study aimed to investigate whether volatile organic compounds measured in exhaled breath condensate can be used as biomarkers for asthma diagnosis in the paediatric population.

METHODS: A total of 64 participants, aged 6-18 years, were recruited on a random basis during visits to an outpatient allergy clinic and to a juvenile football team training session. Lung function, airway reversibility and skin prick tests were performed. Exhaled breath condensate samples were collected, and breathprints were assessed using an electronic nose. Information on medical diagnosis of asthma, rhinitis and atopic dermatitis was retrieved for each participant. A hierarchical cluster model based on the volatilome profiles was then created.

RESULTS: A two-cluster exhaled volatile organic compound-based hierarchical model was able to significantly discriminate individuals with asthma from those without the disease (AUC = 0.81 [0.69-0.93], P < 0.001). Individuals who had persistent asthma and were prescribed corticosteroid therapy by the physician were also significantly distinguished in the model (AUC = 0.81 [0.70-0.92], P < 0.001). Despite being less specific, the method showed higher overall accuracy, sensitivity and AUC values when compared to spirometry with bronchodilation.

CONCLUSIONS: Analysis of the exhaled breath condensate volatilome allowed the distinction of paediatric individuals with a medical diagnosis of asthma, identifying those in need of corticosteroid therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app