Add like
Add dislike
Add to saved papers

Could a Common Mechanism of Protein Degradation Impairment Underlie Many Neurodegenerative Diseases?

At the cellular level, many neurodegenerative diseases (NDs), often considered proteinopathies, are characterized by the accumulation of misfolded and damaged proteins into large insoluble aggregates. Prominent species that accumulate early and play fundamental roles in disease pathogenesis are amyloid β (Aβ) and tau in Alzheimer disease, α-synuclein (α-syn) in Parkinson disease, and polyQ-expanded huntingtin (Htt) in Huntington disease. Although significant efforts have focused on how the cell deals with these protein aggregates, why is it that these misfolded proteins are not degraded normally in the first place? A vast body of literature supports the notion that the cell's protein degradation system for individual proteins-the ubiquitin proteasome system (UPS)-does not function sufficiently in many NDs. The proteasome itself has received significant focus for years due to its obvious failure to degrade misfolded proteins in ND, but no general mechanism has been uncovered. We have recently found that specific pathologically relevant oligomers can potently and directly inhibit the proteasome. What is most interesting is that the misfolded protein's primary amino acid sequence was irrelevant to its ability to inhibit. Instead, the culprit is the 3-dimensional shape of the misfolded oligomers. It turns out that many misfolded proteins in ND can take on this proteasome-impairing shape suggesting that there could be a common mechanism for UPS impairment in many NDs. The proteasome is already an important target for treating cancer, could it also be targeted to broadly treat ND?

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app