Add like
Add dislike
Add to saved papers

Propranolol inhibits proliferation and invasion of hemangioma-derived endothelial cells by suppressing the DLL4/Notch1/Akt pathway.

Infantile hemangioma (IH) is one of the most common benign vascular tumors of infancy. Propranolol has been recently introduced for the treatment of IH. However, the mechanism of protective effect has not been fully understood. In this study, hemangioma-derived endothelial cells (HemECs) were isolated and treated with propranolol. The cell viability was measured by MTT assay, and the cell cycle arrest was detected using flow cytometry. Cell invasion was determined using transwell assay. The expressions of matrix metalloproteinase (MMP)-2, MMP-9, Delta-like 4 (DLL4), Notch1, Akt, p-Akt, and vascular endothelial growth factor (VEGF) were detected using western blot. HemECs were incubated with recombinant human DLL4 (rhDLL4) to investigate the role of DLL4/Notch1 in the effect of propranolol. The results showed that propranolol inhibited cell viability of HemECs in a time-dependent manner. Propranolol suppressed cell proliferation of HemECs by arresting cell progression at G0/G1 phase. Propranolol inhibited the invasion ability of HemECs and reduced the expression levels of MMP-2 and MMP-9 in HemECs. Besides, propranolol treatment blocked the DLL4/Notch1 and Akt signaling and inhibited VEGF expression in HemECs. Treatment with rhDLL4 activated the Akt signaling and attenuated the effect of propranolol on HemECs. Our data indicated that propranolol inhibited the cell proliferation and invasion of HemECs. The effect was possibly involved in the DLL4/Notch1/Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app