Add like
Add dislike
Add to saved papers

Effects of compost containing oxytetracycline on enzyme activities and microbial communities in maize rhizosphere soil.

Veterinary antibiotics can enter agricultural fields via the application of livestock manure containing antibiotics. However, the response of soil microorganisms to compost containing antibiotics is not well understood. A 120-day pot experiment was conducted to investigate the impact of compost containing oxytetracycline (OTC) on the enzyme activities and microbial communities in maize rhizosphere soil. Swine manure was artificially spiked with OTC at four concentrations, 35, 70, 105, and 140 mg kg-1 , and combined with straw to produce compost. The compost products were applied to soil planted with maize. Rhizosphere soil samples were collected on days 1, 15, 30, 60, and 120. The results indicated that the urease activities first increased and then declined, while in contrast, the alkaline phosphatase activities first decreased and then increased slightly. Catalase exhibited dose-related activation during the maize growth period. At the end of the experiment, the soil enzyme activities were similar to their initial values, indicating that the soil enzymes showed a level of recovery. The carbon metabolic activity levels were higher in the soils with high OTC concentrations than in the control, whereas the Shannon diversity index was higher in the control soil. The results of principal component analysis (PCA) indicated that the application of compost containing OTC shifted the structure of the soil microbial community and negatively affected its stability. These results suggest that the compost containing OTC exerted selective pressure on enzyme activities and microbial communities in maize rhizosphere soil and decreased their resilience to antibiotic pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app