Add like
Add dislike
Add to saved papers

Matrine inhibits TPC-1 human thyroid cancer cells via the miR-21/PTEN/Akt pathway.

Oncology Letters 2018 September
Papillary thyroid cancer (PTC) is the primary type of thyroid cancer and the most widespread endocrine malignancy. Matrine is a traditional Chinese medicine and has been demonstrated as a promising alternative drug for the treatment of TPC-1 human PTC. In the present study, the therapeutic effects and the underlying molecular mechanisms of matrine on TPC-1 cells were investigated. Treatment with matrine at the concentrations of 1, 2, 5, 10 and 20 mg/ml inhibited TPC-1 cell proliferation by up to 95.8% (for 20 mg/ml matrine). Flow cytometry indicated that treatment with 10 mg/ml matrine induced up to 61.8% apoptosis of the TPC-1 cells and the cell cycle was arrested at the G0/G1 phase following treatment with matrine (2, 5 and 10 mg/ml) for 48 h. Quantitative polymerase chain reaction indicated that the expression of microRNA (miR)-21 was downregulated and phosphatase and tensin homolog (PTEN) mRNA levels increased up to 1.66-fold following treatment with matrine, and RAC-α serine/threonine-protein kinase (Akt) mRNA levels were downregulated 0.34-fold following treatment with 5 mg/ml matrine, compared with the normal control group. Western blot analysis indicated that matrine at 2 and 5 mg/ml increased levels of the miR-21 target PTEN and decreased the levels of phosphorylated (p)Akt. Furthermore, miR-21 mimic transfection decreased the expression levels of PTEN and increased the levels of pAkt. These results suggested that the miR-21/PTEN/Akt pathway may be one of the mechanisms by which matrine induces apoptosis and cell cycle arrest in TPC-1 thyroid cancer cells. Matrine is an alternative potential drug for the treatment of thyroid cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app