Add like
Add dislike
Add to saved papers

Antitumor activity of BJ-1207, a 6-amino-2,4,5-trimethylpyridin-3-ol derivative, in human lung cancer.

Enhanced expression of NADPH oxidase (NOX) and the subsequent production of reactive oxygen species (ROS) are associated with lung cancer. In the present study, fifty 6-amino-2,4,5-trimethylpyridin-3-ol derivatives were screened for anticancer activity by targeting NOX2-derived ROS. The compounds suppressed ROS production and decreased cancer cell viability (R2  = 0.79). Among the derivatives, the compound coded BJ-1207, which contained a 4-(hydroxydiphenylmethyl)piperidine moiety, exhibited the most effective anticancer activity against A549 lung cancer cell line and eight other cancer cell lines, including H1299, MCF-7, MDA-MB-231, HT-29, SW620, Mia PaCa-2, PANC-1, and U937. BJ-1207 also showed significantly lower inhibitory effects on kinase insert domain receptor (KDR) and c-KIT tyrosine kinase but higher inhibitory activity on NOX than those of sunitinib, a multi-receptor tyrosine kinase (RTK) inhibitor. In addition, BJ-1207-induced inhibition of RTK-downstream signaling pathways, such as ROS production, and expression of target genes, such as stem cell factor and transforming growth factor-α, were similar to those induced by sunitinib. In the xenograft chick tumor model, BJ-1207 inhibited lung tumor growth to a similar or much greater extent than that of sunitinib or cisplatin, respectively. Overall, the present study showed that BJ-1207, a vitamin B6 -derived 2,4,5-trimethylpyridin-3-ol compound with azacyclonol moiety at C (6)-position of the pyridine ring, inhibited NOX activity and that it is a promising lead compound for developing anticancer drugs against lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app