Add like
Add dislike
Add to saved papers

Inverse agonist of ERRγ reduces cannabinoid receptor type 1-mediated induction of fibrinogen synthesis in mice with a high-fat diet-intoxicated liver.

Archives of Toxicology 2018 September
Upon liver intoxication with malnutrition or high-fat diet feeding, fibrinogen is synthesized by hepatocytes and secreted into the blood in human and mouse. Its primary function is to occlude blood vessels upon damage and thereby stop excessive bleeding. High fibrinogen levels may contribute to the development of pathological thrombosis, which is one mechanism linking fatty liver disease with cardiovascular disease. Our previous results present ERRγ as key regulator of hepatocytic fibrinogen gene expression in human. In a therapeutic approach, we now tested ERRγ inverse agonist GSK5182 as regulator of fibrinogen levels in mouse hyperfibrinogenemia caused by diet-induced obesity and in mouse hepatocytes. ACEA, a CB1R agonist, up-regulated transcription of mouse fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated the effect of ACEA (10 µM) on fibrinogen expression in AML12 mouse hepatocytes. Deletion analyses of the mouse fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites for ERRγ on the mouse FGG promoter. ACEA or adenovirus ERRγ injection induced FGA, FGB and FGG mRNA and protein expression in mouse liver, while ERRγ knockdown with Ad-shERRγ attenuated ACEA-mediated induction of fibrinogen gene expression. Moreover, mice maintained on a high-fat diet (HFD) expressed higher levels of fibrinogen, whereas cannabinoid receptor type 1 (CB1R)-KO mice fed an HFD had nearly normal fibrinogen levels. Finally, GSK5182 (40 mg/kg) strongly inhibits the ACEA (10 mg/kg) or HFD-mediated induction of fibrinogen level in mice. Taken together, targeting ERRγ with its inverse agonist GSK5182 represents a promising therapeutic strategy for ameliorating hyperfibrinogenemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app