Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genetic Manipulation of Cryptococcus neoformans.

Cryptococcus neoformans is an opportunistic fungal pathogen, which causes life-threatening meningoencephalitis in immunocompromised individuals and is responsible for more than 1,000,000 infections and 600,000 deaths annually worldwide. Nevertheless, anti-cryptococcal therapeutic options are limited, mainly because of the similarity between fungal and human cellular structures. Owing to advances in genetic and molecular techniques and bioinformatics in the past decade, C. neoformans, belonging to the phylum basidiomycota, is now a major pathogenic fungal model system. In particular, genetic manipulation is the first step in the identification and characterization of the function of genes for understanding the mechanisms underlying the pathogenicity of C. neoformans. This unit describes protocols for constructing target gene deletion mutants using double-joint (DJ) PCR, constitutive overexpression strains using the histone H3 gene promoter, and epitope/fluorescence protein-tagged strains in C. neoformans. © 2018 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app