Add like
Add dislike
Add to saved papers

Associations between complement pathways activity, mannose-binding lectin, and odds of unprovoked venous thromboembolism.

Thrombosis Research 2018 September
INTRODUCTION: Deep vein thrombosis (DVT) originates in the valvular sinuses of large veins in a local milieu characterized by stasis and severe hypoxia. This may induce complement- and coagulation activation, which potentially increases the risk of venous thromboembolism (VTE). The aim of the present study was to investigate whether the activity of the complement pathways, the level of mannose-binding lectin (MBL) and tissue-factor (TF) induced thrombin generation were associated with risk of unprovoked VTE.

METHODS: A case-control study was performed in patients with unprovoked VTE (n = 24) and age- and sex-matched healthy controls (n = 24). Serum complement pathway activity was measured by the total complement screen assay (Wieslab®). MBL was quantified by ELISA. Plasma TF-induced thrombin generation was measured using the CAT-assay.

RESULTS: Activity in the highest quintile of the classical pathway was associated with increased odds of unprovoked VTE (OR 4.5, 95% CI; 0.8-24.7). Moreover, MBL deficiency (≤100 ng/ml) was associated with unprovoked VTE (OR 3.5, 95% Cl; 0.8-15.3). VTE patients had shortened TF-induced lag-time (4.8 ± 0.6 min vs. 5.8 ± 2.1 min, p < 0.001) and a higher endogenous thrombin potential (ETP) (1383 ± 267 nM∗h vs. 1265 ± 247 nM∗h, p = 0.07) than controls. No association between the classical complement pathway activity or MBL deficiency, and parameters of TF-induced thrombin generation was observed.

CONCLUSION: Our findings suggest that high activity of the classical complement pathway, and MBL deficiency, might be associated with an increased odds of unprovoked VTE, independent of activation of TF-induced coagulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app