Add like
Add dislike
Add to saved papers

Solving Partial Least Squares Regression via Manifold Optimization Approaches.

Partial least squares regression (PLSR) has been a popular technique to explore the linear relationship between two data sets. However, all existing approaches often optimize a PLSR model in Euclidean space and take a successive strategy to calculate all the factors one by one for keeping the mutually orthogonal PLSR factors. Thus, a suboptimal solution is often generated. To overcome the shortcoming, this paper takes statistically inspired modification of PLSR (SIMPLSR) as a representative of PLSR, proposes a novel approach to transform SIMPLSR into optimization problems on Riemannian manifolds, and develops corresponding optimization algorithms. These algorithms can calculate all the PLSR factors simultaneously to avoid any suboptimal solutions. Moreover, we propose sparse SIMPLSR on Riemannian manifolds, which is simple and intuitive. A number of experiments on classification problems have demonstrated that the proposed models and algorithms can get lower classification error rates compared with other linear regression methods in Euclidean space. We have made the experimental code public at https://github.com/Haoran2014.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app