Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deep Ensemble Machine for Video Classification.

Video classification has been extensively researched in computer vision due to its wide spread applications. However, it remains an outstanding task because of the great challenges in effective spatial-temporal feature extraction and efficient classification with high-dimensional video representations. To address these challenges, in this paper, we propose an end-to-end learning framework called deep ensemble machine (DEM) for video classification. Specifically, to establish effective spatio-temporal features, we propose using two deep convolutional neural networks (CNNs), i.e., vision and graphics group and C3-D to extract heterogeneous spatial and temporal features for complementary representations. To achieve efficient classification, we propose ensemble learning based on random projections aiming to transform high-dimensional features into a set of lower dimensional compact features in subspaces; an ensemble of classifiers is trained on the subspaces and combined with a weighting layer during the backpropagation. To further enhance the performance, we introduce rectified linear encoding (RLE) inspired from error-correcting output coding to encode the initial outputs of classifiers, followed by a softmax layer to produce the final classification results. DEM combines the strengths of deep CNNs and ensemble learning, which establishes a new end-to-end learning architecture for more accurate and efficient video classification. We show the great effectiveness of DEM by extensive experiments on four data sets for diverse video classification tasks including action recognition and dynamic scene classification. Results have shown that DEM achieves high performance on all tasks with an improvement of up to 13% on CIFAR10 data set over the baseline model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app