Add like
Add dislike
Add to saved papers

Automated Detection of Convulsive Seizures Using a Single Wrist-Worn Accelerometer Device.

Epileptic seizure detection requires specialized approaches such as video/electroencephalography monitoring. However, these approaches are restricted mainly to hospital setting and requires video/EEG analysis by experts, which makes these approaches resource- and labor-intensive. In contrast, we aim to develop a wireless, remote monitoring system using a single wrist-worn accelerometer sensor, which is sensitive to multiple types of convulsive seizures and is capable of detecting seizures with short duration. Simple time domain features including a new set of Poincare plot based features were extracted from the active movement events recorded using a wrist-worn accelerometer sensor. The best features were then selected using the area under the ROC curve analysis. Kernelized support vector data description (SVDD) was then used to classify non-seizure and seizure events. The proposed algorithm was evaluated on 5,576h of recordings from 79 patients and detected 40 (86.95%) of 46 convulsive seizures (generalized tonic-clonic (GTCS), psychogenic non-epileptic (PNES), and complex partial seizures (CPS)) from twenty patients with a total of 270 false alarms (1.16/24h). Furthermore, the algorithm showed a comparable performance (sensitivity 95.23% and false alarm rate 0.64/24h) with respect to existing unimodal and multi-modal methods for GTCS detection. The promising results shows the potential to build an ambulatory monitoring convulsive seizure detection system. A wearable accelerometer based seizure detection system would aid in continuous assessment of convulsive seizures in a timely and non-invasive manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app