Add like
Add dislike
Add to saved papers

Salen Complexes as Fire Protective Agents for Thermoplastic Polyurethane: Deep Electron Paramagnetic Resonance Spectroscopy Investigation.

The contribution of copper complexes of salen-based Schiff bases N, N'-bis(salicylidene)ethylenediamine (C1), N, N'-bis(4-hydroxysalicylidene)ethylenediamine (C2), and N, N'-bis(5-hydroxysalicylidene)ethylenediamine (C3) to the flame retardancy of thermoplastic polyurethane (TPU) is investigated in the context of minimizing the inherent flammability of TPU. Thermal and fire properties of TPU are evaluated. It is observed that fire performances vary depending upon the substitution of the salen framework. Cone calorimetry [mass loss calorimetry (MLC)] results show that, in TPU at 10 wt % loading, C2 and C3 reduce the peak of heat release rate by 46 and 50%, respectively. At high temperature, these copper complexes undergo polycondensation leading to resorcinol-type resin in the condensed phase and thus acting as intumescence reinforcing agents. C3 in TPU is particularly interesting because it delays significantly the time to ignition (MLC experiment). In addition, pyrolysis combustion flow calorimetry shows reduction in the heat release rate curve, suggesting its involvement in gas-phase action. Structural changes of copper complexes and radical formation during thermal treatment as well as their influence on fire retardancy of TPU in the condensed phase are investigated by spectroscopic studies supported by microscopic and powder diffraction studies. Electron paramagnetic resonance (EPR) spectroscopy was fully used to follow the redox changes of Cu(II) ions as well as radical formation of copper complexes/TPU formulations in their degradation pathways. Pulsed EPR technique of hyperfine sublevel correlation spectroscopy reveals evolution of the local surrounding of copper and radicals with a strong contribution of nitrogen fragments in the degradation products. Further, the spin state of radicals was investigated by the two-dimensional technique of phase-inverted echo-amplitude detected nutation experiment. Two different radicals were detected, that is, one monocarbon radical and an oxygen biradical. Thus, the EPR study permits to deeply investigate the mode of action of copper salen complexes in TPU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app