Add like
Add dislike
Add to saved papers

Melatonin attenuates chronic immobilization stress-induced muscle atrophy in rats: Influence on lactate-to-pyruvate ratios and Na + /K + ATPase activity.

This study assessed the protective effect of melatonin against muscle atrophy provoked by chronic immobilization stress (CIS). CIS was induced in rats by limiting their trunk movement for 90 min daily for 6 weeks. Rats subjected to the CIS procedure demonstrated a substantial decrease in body weight, an increase in serum corticosterone, muscle atrophy, and an increase in atrogin-1 mRNA levels. An increase in the serum lactate-to-pyruvate ratio and the oxidative stress accompanied by a reduction of Na+ /K+ ATPase activity could be responsible for these changes. Melatonin efficiently attenuated CIS-induced deleterious effects on the muscle by reducing corticosterone levels, the lactate-to-pyruvate ratio, and oxidative stress, thereby improving Na+ /K+ ATPase activity and muscle condition. We conclude that melatonin can contribute to the prevention of CIS-induced muscle atrophy via its anti-stress, anti-oxidant properties and its effect on Na+ /K+ ATPase activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app