Add like
Add dislike
Add to saved papers

Effects of noise burst rise time and level on bottlenose dolphin (Tursiops truncatus) auditory brainstem responses.

Although the auditory brainstem response (ABR) is known to be an onset response, specific features of acoustic stimuli that affect the morphology of the ABR are not well understood. In this study, the effects of stimulus onset properties were investigated by measuring ABRs in seven bottlenose dolphins while systematically manipulating stimulus rise time and the amplitude of the sound pressure temporal envelope plateau. Stimuli consisted of spectrally pink (i.e., equal mean-square pressure in proportional frequency bands) noise bursts with linear rise (and fall) envelopes and frequency content from 10 to 160 kHz. Noise burst rise times varied from 32 μs to 4 ms and plateau sound pressure levels varied from 96 to 150 dB re 1 μPa. ABR peak latency was found to be a function of the rate of change of the sound pressure envelope, while ABR peak amplitude was a function of the envelope sound pressure at the end of a fixed integration window. The data support previous single-unit and nearfield response data from terrestrial mammals and a model where the rate of change of envelope sound pressure is integrated across a time window aligned with stimulus onset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app