Add like
Add dislike
Add to saved papers

Antiarrhythmic Effects of Carvedilol and Flecainide in Cardiomyocytes Derived from Catecholaminergic Polymorphic Ventricular Tachycardia Patients.

Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for catecholaminergic polymorphic ventricular tachycardia (CPVT). In this study, we evaluated antiarrhythmic efficacy of carvedilol and flecainide in CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carrying different mutations in RYR2. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion and L4115 or V4653F mutation in RYR2 and of a healthy individual. Ca2+ kinetics and drug effects were studied with Fluo-4 AM indicator. Carvedilol abolished Ca2+ abnormalities in 31% of L4115F, 36% of V4653F, and 46% of exon 3 deletion carrying CPVT cardiomyocytes and flecainide 33%, 30%, and 52%, respectively. Both drugs lowered the intracellular Ca2+ level and beating rate of the cardiomyocytes significantly. Moreover, flecainide caused abnormal Ca2+ transients in 61% of controls compared to 26% of those with carvedilol. Carvedilol and flecainide were equally effective in CPVT iPSC-CMs. However, flecainide induced arrhythmias in 61% of control cells. CPVT cardiomyocytes carrying the exon 3 deletion had the most severe Ca2+ abnormalities, but they had the best response to drug therapies. According to this study, the arrhythmia-abolishing effect of neither of the drugs is optimal. iPSC-CMs provide a unique platform for testing drugs for CPVT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app