Journal Article
Review
Add like
Add dislike
Add to saved papers

Full-field in vitro investigation of hard and soft tissue strain in the spine by means of Digital Image Correlation.

Introduction: The spine deserves careful biomechanical investigation, because of the different types of degeneration deriving from daily stress, trauma, and hard and soft tissue pathologies. Many biomechanical studies evaluated the range of motion, structural stiffness of spine segments under different loading conditions, without addressing the strain distribution. Strain gauges have been used to measure strain in the vertebral body, in a pointwise way.What is currently missing is a method to measure the distribution of strain in the soft tissues (intervertebral discs and ligaments), and an integration between measurements in the hard and soft tissues. Digital Image Correlation (DIC) is a recently developed optical technique, which allows measuring the distribution of displacements and deformation in a contact-less way. It can provide a full-field view of the examined surface under load. DIC can therefore give a more complete knowledge of the biomechanics of the spine.

Methods: This study was performed multisegmental porcine spine specimens with two loading configurations (flexion and lateral bending), while DIC was used to measure the strain distribution. The tests showed the different deformation in the vertebral body, intervertebral discs and ligaments in compression and tension. At the same time it was possible to visualize the growth plates, which are Conclusion: Significantly softer than the vertebral bone.This work showed the feasibility of investigating the spine in a full-field way, and to quantify the strain inhomogeneity in the vertebrae and soft tissues. Therefore DIC can help improve implantable devices and the surgical technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app