Add like
Add dislike
Add to saved papers

New insights in the in vitro characterisation and molecular modelling of the P-glycoprotein inhibitory promiscuity.

The presence of several binding sites for both substrates and inhibitors is yet a poorly explored thematic concerning the assessment of the drug-drug interactions risk due to interactions of multiple drugs with the human transport protein P-glycoprotein (P-gp or MDR1, gene ABCB1). In this study we measured the inhibitory behaviour of a set of known drugs towards P-gp by using three different probe substrates (digoxin, Hoechst 33,342 and rhodamine 123). A structure-based model was built to unravel the different substrates binding sites and to rationalize the cases where drugs were not inhibiting all the substrates. A separate set of experiments was used to validate the model and confirmed its suitability to either detect the substrate-dependent P-gp inhibition and to anticipate proper substrates for in vitro experiments case by case. The modelling strategy described can be applied for either design safer drugs (P-gp as antitarget) or to target specific sub-site inhibitors towards other drugs (P-gp as target).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app