Add like
Add dislike
Add to saved papers

Polymer Microneedle Mediated Local Aptamer Delivery for Blocking the Function of Vascular Endothelial Growth Factor.

Overexpression of proteins in the body can cause severe diseases and other physiological disturbances. The development of protein blockers and local delivery systems would offer opportunities for addressing the health problems caused by protein overexpression. Nucleic acid aptamers are an emerging class of ligands with the potential to block proteins effectively; however, little effort has been made in developing polymer systems for local aptamer delivery. In this work, polymer microneedles capable of delivering DNA aptamers locally to inhibit the function of vascular endothelial growth factor (VEGF) were developed and studied. The presence of anti-VEGF aptamer in the polymer matrix did not change the apparent mechanical strength of the microneedles. Once in contact with a physiological solution, the polymer microneedles quickly dissolved, generating a high concentration of anti-VEGF aptamer in the surrounding local microenvironment. Aptamer delivery by way of dissolving polymer microneedles in a tissue phantom reduced VEGF-mediated endothelial cell tube formation. Thus, aptamer-loaded polymer microneedles hold great potential as a therapeutic tool for the treatment of human diseases resulting from protein overexpression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app