Add like
Add dislike
Add to saved papers

Chemically Modified Messenger RNA: Modified RNA Application for Treatment of Achilles Tendon Defects.

Different regenerative medicine approaches for tendon healing exist. Recently, especially gene therapy gained popularity. However, potential mutagenic and immunologic effects might prevent its translation to clinical research. Chemically modified mRNA (cmRNA) might bypass these limitations of gene therapy. Therefore, the purpose of this study was to evaluate the early healing properties of Achilles tendon defects in rats treated with basic fibroblast growth factor (bFGF) cmRNA. Forty male Lewis rats were used for the study and randomly assigned to two study groups: (1) treatment with cmRNA coding for bFGF and (2) noncoding cmRNA control. Protein expression was measured using in vivo bioluminescence imaging at 24, 48, and 72 h, as well as 14 days. Animals were euthanized 2 weeks following surgery. Biomechanical, histological, and immunohistological analyses were performed with the significance level set at p < 0.05. Protein expression was evident for 3 days. At 14 days, bioluminescence imaging revealed only little protein expression. Biomechanically, tendons treated with bFGF cmRNA showed a construct stiffness closer to the healthy contralateral side when compared with the control group (p = 0.034), without any significant differences in terms of load to failure. Hematoxylin and eosin staining detected no side effects of the treatment, as signs of inflammation, or necrosis. Furthermore, it revealed the shape of the nuclei to be more oval in the bFGF group in the tendon midsubstance (p = 0.043) with a reduced cell count (p = 0.035). Immunohistological staining for type I, II, III, and IV collagen did not differ significantly between the two groups. In conclusion, this pilot study demonstrates the feasibility of a novel messenger RNA (mRNA)-based therapy for Achilles tendon defects using chemically modified mRNA coding for bFGF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app