Add like
Add dislike
Add to saved papers

Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.

Salidroside is an important plant-derived aromatic compound with diverse biological properties. Because of inadequate natural resources, the supply of salidroside is currently limited. In this work, we engineered the production of salidroside in yeast. First, the aromatic aldehyde synthase (AAS) from Petroselinum crispum was overexpressed in Saccharomyces cerevisiae when combined with endogenous Ehrlich pathway to produce tyrosol from tyrosine. Glucosyltransferases from different resources were tested for ideal production of salidroside in the yeast. Metabolic flux was enhanced toward tyrosine biosynthesis by overexpressing pathway genes and eliminating feedback inhibition. The pathway genes were integrated into yeast chromosome, leading to a recombinant strain that produced 239.5 mg/L salidroside and 965.4 mg/L tyrosol. The production of salidroside and tyrosol reached up to 732.5 and 1394.6 mg/L, respectively, by fed-batch fermentation. Our work provides an alternative way for industrial large-scale production of salidroside and tyrosol from S. cerevisiae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app