Add like
Add dislike
Add to saved papers

Atomic force microscopy analysis of SasA-KaiC complex formation involved in information transfer from the KaiABC clock machinery to the output pathway in cyanobacteria.

The cyanobacterial clock oscillator is composed of three clock proteins: KaiA, KaiB and KaiC. SasA, a KaiC-binding EnvZ-like orthodox histidine kinase involved in the main clock output pathway, exists mainly as a trimer (SasA3mer ) and occasionally as a hexamer (SasA6mer ) in vitro. Previously, the molecular mass of the SasA-KaiCDD complex, where KaiCDD is a mutant KaiC with two Asp substitutions at the two phosphorylation sites, has been estimated by gel-filtration chromatography to be larger than 670 kDa. This value disagrees with the theoretical estimation of 480 kDa for a SasA3mer -KaiC hexamer (KaiC6mer ) complex with a 1:1 molecular ratio. To clarify the structure of the SasA-KaiC complex, we analyzed KaiCDD with 0.1 mmol/L ATP and 5 mmol/L MgCl2 (Mg-ATP), SasA and a mixture containing SasA and KaiCDD 6mer with Mg-ATP by atomic force microscopy (AFM). KaiCDD images were classified into two types with height distribution corresponding to KaiCDD monomer (KaiCDD 1mer ) and KaiCDD 6mer , respectively. SasA images were classified into two types with height corresponding to SasA3mer and SasA6mer , respectively. The AFM images of the SasA-KaiCDD mixture indicated not only KaiCDD 1mer , KaiCDD 6mer , SasA3mer and SasA6mer , but also wider area "islands," suggesting the presence of a polymerized form of the SasA-KaiCDD complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app