Journal Article
Review
Add like
Add dislike
Add to saved papers

Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb.

The thick ascending limb (TAL) extends from the border of the inner medulla to the renal cortex, thus ascending through regions with wide differences in tissue solute and electrolyte concentrations. Structural and functional differences between TAL cells in the medulla (mTAL) and the cortex (cTAL) would therefore be useful to adapt TAL transport function to a changing external fluid composition. While mechanisms common to all TAL cells play a central role in the reclamation of about 25% of the NaCl filtered by the kidney, morphological features, Na+ / K+ -ATPase activity, NKCC2 splicing and phosphorylation do vary between segments and cells. The TAL contributes to K+ homeostasis and TAL cells with high or low basolateral K+ conductances have been identified which may be involved in K+ reabsorption and secretion respectively. Although transport rates for HCO3- do not differ between mTAL and cTAL, divergent axial and cellular expression of H+ transport proteins in TAL have been documented. The reabsorption of the divalent cations Ca2+ and Mg2+ is highest in cTAL and paralleled by differences in divalent cation permeability and the expression of select claudins. Morphologically, two cell types with different cell surface phenotypes have been described that still need to be linked to specific functional characteristics. The unique external environment and its change along the longitudinal axis require an axial functional heterogeneity for the TAL to optimally participate in conserving electrolyte homeostasis. Despite substantial progress in understanding TAL function, there are still considerable knowledge gaps that are just beginning to become bridged.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app