Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnetite/Lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles.

Water Research 2018 March 2
An effective approach for eutrophication control and phosphate recovery remains a longstanding challenge. Herein, we present a new technique for phosphate sequestration in lake and phosphate recovery using novel magnetically recoverable magnetite/lanthanum hydroxide [M-La(OH)3 ] hybrids that can be prepared using a simple one-pot synthesis method. Batch studies show that M-La(OH)3 exhibits a strong sorption towards phosphate with sorption capacities of up to 52.7 mg-P/g at pH 7.0 in water. A simple model indicates that the efficiency of M-La(OH)3 for phosphate sequestration in lake is significantly attenuated by 34-45% compared to that in water, due to interference from sediment particles. However, our results demonstrate that sediments suspensions mixed with a M-La(OH)3 content of 1-3% exhibit a capability of up to 1.2 mg-P/g for sequestering external phosphate compared with that of 0.2 mg-P/g for pristine sediment at pH 7.3. M-La(OH)3 -mixed sediment suspensions appear to effectively sequester phosphate over an environmentally relevant pH range from 4 to 8.5. Phosphorus (P) fractionation experiments indicate that the enhanced phosphate sorption by M-La(OH)3 -mixed sediment suspensions is mainly due to the increased fractions of NaOH-P and inorganic P. This work indicates that the M-La(OH)3 has the potential for phosphate sequestration and recovery from lake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app