Add like
Add dislike
Add to saved papers

Magnetic Field-Enhanced 4-Electron Pathway for Well-Aligned Co 3 O 4 /Electrospun Carbon Nanofibers in the Oxygen Reduction Reaction.

ChemSusChem 2018 Februrary 10
The sluggish reaction kinetics of the oxygen reduction reaction (ORR) has been the limiting factor for fuel energy utilization, hence it is desirable to develop high-performance electrocatalysts for a 4-electron pathway ORR. A constant low-current (50 μA) electrodeposition technique is used to realize the formation of a uniform Co3 O4 film on well-aligned electrospun carbon nanofibers (ECNFs) with a time-dependent growth mechanism. This material also exhibits a new finding of mT magnetic field-induced enhancement of the electron exchange number of the ORR at a glassy carbon electrode modified with the Co3 O4 /ECNFs catalyst. The magnetic susceptibility of the unpaired electrons in Co3 O4 improves the kinetics and efficiency of electron transfer reactions in the ORR, which shows a 3.92-electron pathway in the presence of a 1.32 mT magnetic field. This research presents a potential revolution of traditional electrocatalysis by simply applying an external magnetic field on metal oxides as a replacement for noble metals to reduce the risk of fuel-cell degradation and maximize the energy output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app