Add like
Add dislike
Add to saved papers

The precise subcellular localization of Dlg in the Drosophila larva body wall using improved pre-embedding immuno-EM.

Discs-large (Dlg) plays important roles in nerve tissue and epithelial tissue in Drosophila. However, the precise positioning of Dlg in the neuromuscular junction remains to be confirmed using an optimized labeling method. In this study, we improved the method of pre-embedding immunogold electron microscopy without the osmic tetroxide procedure, and we found that Lowicryl K4 M resin and low temperature helped to preserve the authenticity of the labeling signal with relatively good contrast. Dlg was strongly expressed in the entire subsynaptic reticulum (SSR) membrane of type Ib boutons, expressed in parts of the SSR membrane of type Is boutons, weakly expressed in axon terminals and axons, and not expressed in pre- or postsynaptic membranes of type Is boutons. In muscle cells and stratum corneum cells, Dlg was expressed both in the cytoplasm and in organelles with biomembranes. The precise location of Dlg in SSR membranes, rather than in postsynaptic membranes, shows that Dlg, with its multiple domains, acts as a remote or indirect regulator in postsynaptic signal transduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app