Read by QxMD icon Read

Journal of Neuroscience Research

Gary H Wynn
No abstract text is available yet for this article.
September 19, 2017: Journal of Neuroscience Research
Chiara Robba, Danilo Cardim, Mypinder Sekhon, Karol Budohoski, Marek Czosnyka
Transcranial Doppler (TCD) ultrasonography is a noninvasive bedside monitoring technique that can evaluate cerebral blood flow hemodynamics in the intracranial arterial vasculature. TCD allows assessment of linear cerebral blood flow velocity, with a high temporal resolution and is inexpensive, reproducible, and portable. The aim of this review is to provide an overview of the most commonly used TCD derived signals and measurements used commonly in neurocritical care. We describe both basic (flow velocity, pulsatility index) and advanced concepts, including critical closing pressure, wall tension, autoregulation, noninvasive intracranial pressure, brain compliance, and cerebrovascular time constant; we also describe the clinical applications of TCD to highlight their utility in the diagnosis and monitoring of cerebrovascular diseases as the "stethoscope for the brain...
September 7, 2017: Journal of Neuroscience Research
Joyce A Benjamins, Liljana Nedelkoska, Robert P Lisak
ACTH, a melanocortin peptide used to treat multiple sclerosis (MS) relapses, acts by stimulating adrenal corticosteroid (CS) production via melanocortin receptor 2 (MC2R), but it may also exert a therapeutic effect independent of CS by stimulating other melanocortin receptors (MCR) distributed in many tissues, including the brain. We reported that oligodendroglia (OL) and oligodendroglial precursor cells (OPC) express MC4R, and that ACTH 1-39 protects OL and OPC in vitro from cell death induced by mechanisms likely involved in white matter damage in MS...
September 6, 2017: Journal of Neuroscience Research
Julia P Segal, Kaitlyn A Tresidder, Charvi Bhatt, Ian Gilron, Nader Ghasemlou
The importance of a neuroinflammatory response to the development and maintenance of inflammatory and neuropathic pain have been highlighted in recent years. Inflammatory cells contributing to this response include circulating immune cells such as monocytes, T and B lymphocytes, and neutrophils, as well as microglia in the central nervous system. Pain signals are transmitted via sensory neurons in the peripheral nervous system, which express various receptors and channels that respond to mediators secreted from these inflammatory cells...
September 2, 2017: Journal of Neuroscience Research
Sung Young Park, Sang-Ho Song, Brandon Palmateer, Akash Pal, Eric D Petersen, Gabrielle P Shall, Ryan M Welchko, Keiji Ibata, Atsushi Miyawaki, George J Augustine, Ute Hochgeschwender
Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin-1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4...
September 1, 2017: Journal of Neuroscience Research
Etidal Al-Suwailem, Saba Abdi, Afaf El-Ansary
Females have been found to be at lower risk for the development of neurodevelopmental disorders than males. The greater neuroprotection in females is mostly due to female sex hormones. Estrogen is hypothesized to provide neuroprotection by suppressing the neuro-excitotoxicity induced by glutamate (Glu). This study was conducted to understand the effect of sex in modulating Glu signaling in juvenile rats. Brain tissue homogenate of 15 Wistar albino rats (9 males, 6 females) weighing 60 to 80 g and aged approximately 28 days was used...
September 1, 2017: Journal of Neuroscience Research
Si-Ning Xie, Hong Ye, Jun-Fa Li, Li-Xin An
Exposure of neonatal rat to sevoflurane leads to neurodegeneration and deficits of spatial learning and memory in adulthood. However, the underlying mechanisms remain unclear. The type A γ-aminobutyric acid receptor (GABAA R) is a target receptor for sevoflurane. The present study intends to investigate the changes in GABAA R α1/α2 expression and its relationship with the neurotoxicity effect due to sevoflurane in neonatal rats. After a dose-response curve was constructed to determine minimum alveolar concentration (MAC) and safety was guaranteed in our 7-day-old neonatal rat pup mode, we conducted two studies among the following groups: (A) the control group; (B) the sham anesthesia group; and (C) the sevoflurane anesthesia group and all three groups were treated in the same way as the model...
August 26, 2017: Journal of Neuroscience Research
Gyun Jee Song, Hyejin Jeon, Minchul Seo, Myungjin Jo, Kyoungho Suk
Optineurin (OPTN) is an autophagy receptor protein that has been implicated in glaucoma and amyotrophic lateral sclerosis. OPTN-mediated autophagy is a complex process involving many autophagy-regulating proteins. Autophagy plays a critical role in removing damaged organelles, intracellular pathogens, and protein aggregates to maintain cellular homeostasis. We identified Ypt1 as a novel interaction partner of OPTN by performing a large-scale yeast-human two-hybrid assay. Coimmunoprecipitation assay showed that OPTN interacted with Rab1, the mammalian homolog of yeast Ypt1, in N2a mouse neuroblastoma cell line...
August 26, 2017: Journal of Neuroscience Research
Beihui Liu, A G Teschemacher, Sergey Kasparov
Astroglia are the homoeostatic cells of the central nervous system, which participate in all essential functions of the brain. Astrocytes support neuronal networks by handling water and ion fluxes, transmitter clearance, provision of antioxidants, and metabolic precursors and growth factors. The critical dependence of neurons on constant support from the astrocytes confers astrocytes with intrinsic neuroprotective properties. On the other hand, loss of astrocytic support or their pathological transformation compromises neuronal functionality and viability...
August 24, 2017: Journal of Neuroscience Research
Bellal Joseph, Muhammad Khan, Peter Rhee
PURPOSE OF REVIEW: Traumatic Brain Injury (TBI) remains the leading cause of morbidity and mortality in U.S. Since the last decade, there have been several advances in the understanding and management of TBI that have shown the potential to improve outcomes. The aim of this review is to provide a useful overview of these potential diagnostic and treatment strategies that have yet to be proven, along with an assessment of their impact on outcomes after a TBI. RECENT FINDINGS: Recent technical advances in the management of a TBI are grounded in a better understanding of the pathophysiology of primary and secondary insult to the brain after a TBI...
August 24, 2017: Journal of Neuroscience Research
Iype Cherian, Margarita Beltran, Alessandro Landi, Concetta Alafaci, Fabio Torregrossa, Giovanni Grasso
Brain edema after severe traumatic brain injury (TBI) plays an important role in the outcome and survival of injured patients. It is also one of the main targets in the therapeutic approach in the current clinical practice. To date, the pathophysiology of traumatic brain swelling is complex and, being that it is thought to be mainly cytotoxic and vasogenic in origin, not yet entirely understood. However, based on new understandings of the hydrodynamic aspects of cerebrospinal fluid (CSF), an additional mechanism of brain swelling can be considered...
August 24, 2017: Journal of Neuroscience Research
Esther Krook-Magnuson
No abstract text is available yet for this article.
August 24, 2017: Journal of Neuroscience Research
Concetta Scazzone, Luisa Agnello, Paolo Ragonese, Bruna Lo Sasso, Chiara Bellia, Giulia Bivona, Rosaria Schillaci, Giuseppe Salemi, Marcello Ciaccio
BACKGROUND: MS is a neurodegenerative autoimmune disease resulting from a complex interaction of genetic and environmental factors. Among these, vitamin D and genetic variants associated with vitamin D-metabolism gain great attention. The aim of our study was to assess five SNPs in NADSYN1 and CYP2R1 genes in relation to serum 25-OH-vitamin D3 levels in MS patients and controls. METHODS: 25-OH-vitamin D3 levels and genotyping of CYP2R1- and NADSYN1-SNPs were investigated both in MS patients and in healthy controls...
August 23, 2017: Journal of Neuroscience Research
Lianchun Yu, Yuguo Yu
Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals...
August 22, 2017: Journal of Neuroscience Research
Lorre S Atlan, Colin Smith, Susan S Margulies
To guide development of safety equipment that reduces sports-related head injuries, we sought to enhance predictive relationships between head movement and acute axonal injury severity. The severity of traumatic brain injury (TBI) is influenced by the magnitude and direction of head kinematics. Previous studies have demonstrated correlation between rotational head kinematics and symptom severity in the adult. More recent studies have demonstrated brain injury age- and direction-dependence, relating head kinematics to white matter tract-oriented strains...
August 21, 2017: Journal of Neuroscience Research
Michal Cicanic, Midori Edamatsu, Yoko Bekku, Ivan Vorisek, Toshitaka Oohashi, Lydia Vargova
Bral2 is a link protein stabilizing the binding between lecticans and hyaluronan in perineuronal nets and axonal coats (ACs) in specific brain regions. Using the real-time iontophoretic method and diffusion-weighted magnetic resonance, we determined the extracellular space (ECS) volume fraction (α), tortuosity (λ), and apparent diffusion coefficient of water (ADCW ) in the thalamic ventral posteromedial nucleus (VPM) and sensorimotor cortex of young adult (3-6 months) and aged (14-20 months) Bral2-deficient (Bral2(-/-) ) mice and age-matched wild-type (wt) controls...
August 16, 2017: Journal of Neuroscience Research
Lourdes Álvarez-Arellano, Martha Pedraza-Escalona, Tonali Blanco-Ayala, Nohemí Camacho-Concha, Javier Cortés-Mendoza, Leonor Pérez-Martínez, Gustavo Pedraza-Alva
β-Amyloid peptide accumulation in the cortex and in the hippocampus results in neurodegeneration and memory loss. Recently, it became evident that the inflammatory response triggered by β-Amyloid peptides promotes neuronal cell death and degeneration. In addition to inflammation, β-Amyloid peptides also induce alterations in neuronal autophagy, eventually leading to neuronal cell death. Thus, here we evaluated whether the inflammatory response induced by the β-Amyloid peptides impairs memory via disrupting the autophagic flux...
August 12, 2017: Journal of Neuroscience Research
Julia S Crone, Branden J Bio, Paul M Vespa, Evan S Lutkenhoff, Martin M Monti
In 2000, a landmark case report described the concurrent restoration of consciousness and thalamo-frontal connectivity after severe brain injury (Laureys et al., ). Being a single case however, this study could not disambiguate whether the result was specific to the restoration of consciousness per se as opposed to the return of complex cognitive function in general or simply the temporal evolution of post-injury pathophysiological events. To test whether the restoration of thalamo-cortical connectivity is specific to consciousness, 20 moderate-to-severe brain injury patients (from a recruited sample of 42) underwent resting-state functional magnetic resonance imaging within a week after injury and again six months later...
August 12, 2017: Journal of Neuroscience Research
Patrick A Forcelli
Epilepsy is the quintessential circuit disorder, with seizure activity propagating through anatomically constrained pathways. These pathways, necessary for normal sensory, motor, and cognitive function, are hijacked during seizures. Understanding the network architecture at the level of both local microcircuits and distributed macrocircuits may provide new therapeutic avenues for the treatment of epilepsy. Over the past decade, optogenetic and chemogenetic tools have enabled previously impossible levels of functional circuit mapping in neuroscience...
August 9, 2017: Journal of Neuroscience Research
Alfred Xuyang Sun, Eng-King Tan
No abstract text is available yet for this article.
August 9, 2017: Journal of Neuroscience Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"